Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep ; 38(8): 110414, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1700507

ABSTRACT

Inflammasome activation exacerbates infectious disease caused by pathogens such as Listeria monocytogenes, Staphylococcus aureus, and severe acute respiratory syndrome coronavirus 2. Although these pathogens activate host inflammasomes to regulate pathogen expansion, the mechanisms by which pathogen toxins contribute to inflammasome activation remain poorly understood. Here we show that activation of inflammasomes by Listeria infection is promoted by amino acid residue T223 of listeriolysin O (LLO) independently of its pore-forming activity. LLO T223 is critical for phosphorylation of the inflammasome adaptor ASC at amino acid residue Y144 through Lyn-Syk signaling, which is essential for ASC oligomerization. Notably, a Listeria mutant expressing LLO T223A is impaired in inducing ASC phosphorylation and inflammasome activation. Furthermore, the virulence of LLO T223A mutant is markedly attenuated in vivo due to impaired ability to activate the inflammasome. Our results reveal a function of a pathogen toxin that exacerbates infection by promoting phosphorylation of ASC.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Heat-Shock Proteins/metabolism , Hemolysin Proteins/metabolism , Inflammasomes/metabolism , Listeria monocytogenes/pathogenicity , Signal Transduction , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/deficiency , CARD Signaling Adaptor Proteins/genetics , Gene Editing , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Interleukin-18/metabolism , Listeria monocytogenes/metabolism , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Phosphorylation , Syk Kinase/genetics , Syk Kinase/metabolism , Virulence , src-Family Kinases/genetics , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL